
Bob Frank
Yale University 

ICGI 2020/2021

The Formal Complexity
of Natural Language
Grammars Revisited
Perspectives from Neural Networks

• Descriptive Adequacy: Is the theory sufficiently rich to provide a
description of a natural language? (Lower bound on complexity)

Chomsky (1965)
The Goals of Linguistic Theory

• Chomsky Hierarchy:

• Unrestricted Grammar/
Turing Machine

• Context-Sensitive
Grammar/Linear Bounded
Automaton

• Context-Free Gramma/
Push-Down Automaton

• Right Linear Grammar/
Finite Automaton

Comparing formal grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

Descriptive Accuracy
Comparing Formal Grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

Finite State is not sufficiently powerful:

The book an italian I never heard of wrote got published

Descriptive Accuracy
Comparing Formal Grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

 
Context-free is not sufficiently powerful:

mer d’chind em Hans es huus lönd hälfe aastrüche 
we the children Hans the house let help paint 

``we let the children help Hans paint the house.'

• Descriptive Adequacy: Is the theory sufficiently rich to provide a
description of a natural language? (Lower bound on complexity)

• Explanatory Adequacy: Does the theory provide an account of
how a learner projects from a finite sample of data into a
grammar?

• Chomsky’s Idea (Inductive Bias): Theory provides a “ranking”
of grammatical hypotheses, which determines their preference
for the learner.

Chomsky (1965)
The Goals of Linguistic Theory

• Question formation:

• The zebra is resting ⇒  
Is the zebra resting?

• The zebra is hoping that the lion has eaten ⇒ 
Is the zebra hoping that the lion has eaten?

Explanatory Adequacy
Comparing Formal Grammars

Move Main (structural):
move the main verb’s

auxiliary verb to the front
of the sentence

Move First (linear):  
move the first verb’s

auxiliary verb to the front
of the sentence

• These hypotheses are distinguishable on the basis
of data that is (plausibly) not part of a child’s
experience:

• [The zebra that is resting] has eaten a bug ⇒  
MAIN: Has [the zebra that is resting] eaten a bug? 
FIRST: *Is [the zebra that resting] has eaten a bug?

• A grammar formalism that favors the right
generalization (i.e., makes the right rule simpler) is
preferable

Explanatory Adequacy
Comparing Formal Grammars

Move Main (structural):
move the main verb’s

auxiliary verb to the front
of the sentence

Move First (linear):  
move the first verb’s

auxiliary verb to the front
of the sentence

Explanatory Adequacy and CFGs
Comparing Formal Grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

Context-free does not make the right things simple:

Fred admired himself. Alice admired herself

a

oS

LS

?2`b2H7

o

�/KB`2/

LS

�HB+2

a

oS

LS

?BKb2H7

o

�/KB`2/

LS

6`2/

S → NP VP

VP → V NP

Explanatory Adequacy
Comparing Formal Grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

Context-free does not make the right things simple:

Fred admired himself. Alice admired herself

a

oS

LS

?2`b2H7

o

�/KB`2/

LS

�HB+2

a

oS

LS

?BKb2H7

o

�/KB`2/

LS

6`2/

S → NP-m VP-m

VP-m → V NP-m 

S → NP-f VP-f

VP-f → V NP-f

What counts as “simple” in CFG does

not correspond to grammatical naturalness!

Explanatory Adequacy
Comparing Formal Grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

Transformational grammars
(CFG + structure-dependent modifications)

provide a natural account of grammatical phenomena

Non-structural generalization are harder to state

S → NP VP

VP → V NP

X — Nom — Y — Nom’ — Z →  
X — Nom — Y — Nom’+Self — Z

• Descriptive Adequacy: Is the theory sufficiently rich to provide a
description of a natural language? (Lower bound on complexity)

• Explanatory Adequacy: Does the theory provide an account of
how a learner projects a finite sample of data into the right
grammar?

• von Humboldt’s idea: Theory limits grammatical hypotheses
to those that are compatible with linguistic universals. (Upper
bound on complexity)

• Constraint imposed by a grammatical theory limits
hypotheses (grammatical universals), and should/could
make the grammar learning easier.

Chomsky (1965)
The Goals of Linguistic Theory

Explanatory Adequacy
Comparing Formal Grammars

Recursively Enumerable

Context-Sensitive

Context-Free

Finite State

Transformational grammars
(CFG + structure-dependent modifications)

provide a natural account of grammatical phenomena

Non-structural generalization are harder to state

But TGs are very powerful (Peters and Ritchie)!

They do not limit the expected range of
grammatical patterns or analytical options

• Most work in generative grammar: stipulate properties of grammars:

• Final over final condition: no structures where a head-initial
phrase is contained in a head-final phrase in the same extended
projection/domain

• Williams cycle: a phrase cannot move into a position that is “less
prominent” than the one it is currently in

• Subjacency: No movement across more than one bounding
node.

• An alternative: derive constraints on what is possible from formal
(computational) properties of grammars

What are Language Universals?

• Chomsky (1980)

• We are now asking whether there is some reason of principle
why these grammars must generate recursive sets. No
serious argument has ever been advanced in support of such
a claim.

• Chomsky (2005)

• The Principles-and-Parameters approach opened the possibility
for serious investigation of the third factor, and the attempt to
account for properties of language in terms of general
considerations of computational efficiency, eliminating some
of the technology postulated as specific to language and
providing more principled explanation of linguistic phenomena.

The Changing Tide

• Joshi (1985) introduces the Mildly Context-Sensitive Languages (MCSLs)

• Limited crossing dependencies: the class of natural languages should be sufficiently
expressive to characterize the cross-serial word order patterns found in languages like
Swiss German (Shieber 1985)  
 
 but not MIX =

• Constant Growth property: the sentences in any natural language should not have
gaps of unbounded length (i.e., if we order the strings in a language by length, the gaps
should be bounded in size).  

 
 but not

• Polynomial parsing: structural descriptions can be efficiently assigned to strings

• Not a formal definition, but several weakly equivalent instantiations: Tree Adjoining
Grammars, Combinatory Categorial Grammars, Linear Indexed Grammars (MCFGs and
MGs are richer)

ww {w ∈ {a, b, c}* |#a(w) = #b(w) = #c(w)}

{a2n |n ∈ ℕ} {an2 |n ∈ ℕ}

Computational Universals of Grammar

• Well-Nesting (Kuhlman 2007):

For all edges v1 → v2 , w1 → w2 in D, if [v1, v2] partially
overlaps [w1, w2] then v1 →* w1 or w1 →* v1.

Computational Universals of Grammar

Marco Kuhlmann. Dependency Structures and Lexicalized Grammars, volume 6270 of LNCS.
Springer, 2010. The original publication is available at www.springerlink.com.

5.2 Well-Nested Dependency Structures 59

1 2 3 4 5

(a) D4

1 2 3 4 5

(b) D5

Fig. 5.5: Two dependency structures: one well-nested, the other one ill-nested

there are both well-nested and ill-nested dependency structures of degree k.
Projective structures are both weakly non-projective and well-nested. In sum-
mary, we obtain the following hierarchy of classes of dependency structures:

projective (weakly non-projective (well-nested (unrestricted .

5.2.2 Non-Crossing Partitions

Our next aim is to show that well-nestedness is algebraically transparent. To
do so, we develop an alternative relational characterization of well-nestedness
based on the notion of non-crossing partitions.

Definition 5.2.2 Let C = (A ;�) be a chain. A partition ⇧ of A is called
non-crossing , if whenever there exist four elements a1 � b1 � a2 � b2 in A

such that a1 and a2 belong to the same class of ⇧, and b1 and b2 belong to
the same class of ⇧, then these two classes coincide. A partition that is not
non-crossing is called crossing. 2

Non-crossing partitions enjoy a number of interesting formal properties. In
particular, the number of non-crossing partitions of a chain with n elements
is the Catalan number, Cn = 1

n+1

�2n
n

�
, and by this property, non-crossing

partitions are connected to a large family of mathematical structures—such
as binary trees, Catalan paths in the plane, pattern-avoiding permutations,
and (most important in the context of this study) well-bracketed strings and
children-ordered trees. Consequently, non-crossing partitions appear in a large
number of mathematical applications. Simion [109] provides a comprehensive
overview.

Example 5.2.2 Consider the following partitions on the chain ([6] ;):

⇧1 = {{1}, {2, 3, 4}, {5, 6}} , ⇧2 = {{1}, {2, 3, 6}, {4, 5}} ,
⇧3 = {{1}, {2, 4, 6}, {3, 5}} .

Both ⇧1 and ⇧2 are non-crossing. Partition ⇧3 is crossing, as witnessed by
the sequence 2 < 3 < 4 < 5: the elements 2 and 4 and the elements 3 and 5
belong to the same class of ⇧2, but these two classes do not coincide. 2

Marco Kuhlmann. Dependency Structures and Lexicalized Grammars, volume 6270 of LNCS.
Springer, 2010. The original publication is available at www.springerlink.com.

64 5 Dependency Structures Without Crossings

linear in the size of that graph. Consequently, the run-time of Möhl’s second
algorithm is O(n2).

Havelka [45] studies the relationship between well-nestedness and the level

types of non-projective edges [43] and presents an algorithm that tests for
well-nestedness in time O(n2).

5.3 Empirical Evaluation

To conclude this chapter, we now evaluate and compare the empirical ad-
equacy of weak non-projectivity and well-nestedness on the treebank data.
The corresponding counts and percentages are given in Table 5.1.

The experimental results for weak non-projectivity mirror its formal re-
strictiveness: enforcing weak non-projectivity excludes more than 75% of the
non-projective data in both versions of the PDT, and 90% of the data in the
DDT. Given these figures, weak non-projectivity appears to be of little use
as a generalization of projectivity. The relatively large difference in cover-
age between the two treebanks may at least partially be explained with their
different annotation schemes for sentence-final punctuation: In the DDT, sen-
tence-final punctuation marks are annotated as dependents of the main verb
of a dependency subtree. This places severe restrictions on permitted forms
of non-projectivity in the remaining sentence, as every discontinuity that in-
cludes the main verb must also include the dependent punctuation marks (see
the discussion in Section 5.1). On the other hand, in the PDT, a sentence-final
punctuation mark is annotated as a separate root node with no dependents.

All dependency structures

DDT PDT 1.0 PDT 2.0

projective 3 730 84.95% 56 168 76.85% 52 805 77.02%
weakly non-proj. 3 794 86.40% 60 048 82.16% 56 367 82.21%
well-nested 4 386 99.89% 73 010 99.89% 68 481 99.88%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

Non-projective dependency structures only

DDT PDT 1.0 PDT 2.0

weakly non-proj. 64 9.68% 3 880 22.93% 3 562 22.61%
well-nested 597 90.32% 16 842 99.54% 15 676 99.49%

total 661 100.00% 16 920 100.00% 15 757 100.00%

Table 5.1: The number of weakly non-projective and well-nested dependency
structures in three treebanks

• Block Degree (Kuhlman 2007):

Computational Universals of Grammar

Marco Kuhlmann. Dependency Structures and Lexicalized Grammars, volume 6270 of LNCS.
Springer, 2010. The original publication is available at www.springerlink.com.

38 4 Dependency Structures of Bounded Degree

Definition 4.1.5 Let D be a dependency structure. The block-degree of a
node u of D is the number of blocks of u. The block-degree of D is the
maximum among the block-degrees of its nodes. 2

Example 4.1.5 Figure 4.2 shows two examples of non-projective dependency
structures. For both structures, consider the yield of the node 2. In struc-
ture D1, the yield b2c falls into two blocks, {2, 3} and {6}. Since this is
also the maximal number of blocks per yield, the block-degree of D1 is 2.
In structure D2, the yield b2c consists of three blocks, {1}, {3}, and {6}; the
block-degree of D2 is 3. 2

1 2 3 4 5 6

(a) D1, block-degree 2

1 2 3 4 5 6

(b) D2, block-degree 3

Fig. 4.2: Two non-projective dependency structures

Let us say that a dependency structure is block k, if its block-degree is at
most k. We write Dk for the class of all dependency structures that are block k.
It is immediate from this definition that the class Dk is a proper subclass of
the class Dk+1, for all k 2 N. It is also immediate that a dependency structure
is projective if and only if it belongs to the class D1. Thus, the block-degree
measure induces an infinite hierarchy of ever more non-projective dependency
structures, with the class of projective structures at the lowest level of this
hierarchy. This is interesting because it allows us to scale the complexity
of our formal models with the complexity of the data: the transition from
projectivity to full non-projectivity becomes gradual. A crucial question is, of
course, whether block-degree is a useful measure in practice. To answer this
question, we evaluate the practical relevance of the block-degree measure in
Section 4.4.

4.1.3 Related Work

The gap-degree measure (and hence, the block-degree measure) is intimately
related to the notion of node-gaps complexity , due to Holan et al. [48]. Node-
gaps complexity was originally introduced as a complexity measure for deriv-
ations in a dependency grammar formalism. Later, it was also applied to the
empirically more transparent results of these derivations, objects essentially

Marco Kuhlmann. Dependency Structures and Lexicalized Grammars, volume 6270 of LNCS.
Springer, 2010. The original publication is available at www.springerlink.com.

4.4 Empirical Evaluation 51

block-degree DDT PDT 1.0 PDT 2.0

1 (projective) 3 730 84.95% 56 168 76.85% 52 805 77.02%
2 654 14.89% 16 608 22.72% 15 467 22.56%
3 7 0.16% 307 0.42% 288 0.42%
4 – – 4 0.01% 1 < 0.01%
5 – – 1 < 0.01% 1 < 0.01%

total 4 391 100.00% 73 088 100.00% 68 562 100.00%

Table 4.3: Dependency structures of various block-degrees in three treebanks

The general impression that we get from the experiments is that even a
small step beyond projectivity suffices to cover virtually all of the data in
the three treebanks. Specifically, it is sufficient to go up to block-degree 2: the
structures with block-degree greater than 2 account for less than half a percent
of the data in any treebank. These findings confirm similar results for other
measures of non-projectivity, such as Nivre’s degree [85] and Havelka’s level

types [44]. Together, they clearly indicate that to contrast only projective and
non-projective structures may be too coarse a distinction, and that it may
be worthwhile to study classes of dependency structures with intermediate
degrees of non-projectivity. The class of dependency structures with block-
degree at most 2 appears to be a promising starting point.

Note that, from a linguistic point of view, block-degree is a measure of the
discontinuity of a syntactic unit. While we have formulated it for dependency
trees, recent work has also evaluated it as a measure for phrase-structure trees
[71].

Well-nested dependencies of

block degree at most 2

are exactly those generable

by TAG/CCG

Well nested 2-MCFGs  
(weakly) equivalent  

to TAG/CCG

• The good news: computational properties of MCSLs derive a
number of linguistic patterns:

• Subjacency (Kroch and Joshi)

• Williams cycle (Frank)

• Constraints on ordering (Steedman, Kroch and Santorini)

• The bad news: The constraints imposed by MCS don’t help
learning

• Gold: even the lowest rung on the Chomsky hierarchy doesn’t
constitute a learnable class

Computational Universals of Grammar

• Another path: look for learnable subclasses

• Heinz, Chandlee, Jardine, Rogers:
subregular languages  
(for phonological patterns)

• Clark, Eyraud, Yoshinaka, Kanazawa:
substitutable and congruential grammars
(for syntactic patterns)

Formal grammars and learning

• Do the resulting classes match properties of natural language? Is there a
convergence between learning and typology?

• In the domain of Phonology, things looks promising (Heinz et al.)

• Attested properties admit an elegant typology:

• Phonotactics/cluster restrictions: Strictly local

• Long-distance interactions (Chumash sibilants): Strictly piecewise

• Stress: Tier-based Strictly Local

• No way to state “impossible” constraints:

• First/Last Harmony

• Even number of sibilants

Formal grammars and learning

• Do the resulting classes match properties of natural language? Is there a
convergence between learning and typology?

• Syntax: Less promising (Hao, 2019, Graf 2013)

• Non-structural properties  
 is k-substitutable for all k

• Unconstrained crossing dependencies 
MIX = is k-substitutable
for all k

• Unbounded copying 
 with L context-free is generated by a

3-MCFG with the 2-FKP and 1-FCP

MODn = {x | |x | = 0 mod n}

{w ∈ {a, b, c}* |#a(w) = #b(w) = #c(w)}

COPYn(L) = {(x#)n |x ∈ L}

Formal grammars and learning

• A model of transduction or acceptance:

Recurrent networks
The world of neural networks

a<t> = tanh(W0a<t−1> + W1x<t> + ba)
y<t> = softmax(Wya<t> + by)

c<t> = Γu ⊙ c̃<t> + Γf ⊙ c<t−1>

Γ = σ(Wx<t> + Ua<t−1> + b)

c̃<t> = tanh(Wc[Γr ⊙ a<t−1>; x<t>] + bc)

a<t> = Γo ⊙ c<t>

LSTM

c<t> = Γu ⊙ c̃<t> + (1 − Γu) ⊙ c<t−1>

Γ = σ(Wx<t> + Ua<t−1> + b)

c̃<t> = tanh(Wc[Γr ⊙ a<t−1>; x<t>] + bc)

a<t> = c<t>

GRU

Deep RNNs
The world of neural networks

Give access to all
(previous) time steps
(attention).

Take sum of all these
inputs weighted by
mask that is
computed by
comparing
representations.

Attention
The world of neural networks

Eliminate recurrence
and use only
attention and deep
networks to pass
information.

Need for explicit
representation of
position of input
token.

Transformers
The world of neural networks

• Are networks sufficiently rich to capture the properties of natural
language?

• Siegelmann and Sontag (1992, 1994), Siegelmann (1998):
RNNs can compute all Turing machine computable functions.

• Pérez et al. (2019), Bhattamishra et al. (2020): Transformers are
Turing complete too.

• However both of these results require arbitrary (rational)
precision and unbounded computation time

Descriptive Adequacy of NNs

• Weiss et al. (2019), Merrill (2020), Merrill et al. (2020) impose bounded
precision (saturated values):

• SRNLs = GRULs = Regular Languages

• LSTMLs ⊆ CLs (real time counter languages)

• Kirov and Frank (2011): With bounded time and o(log n) precision, SRNs
can represent nested and crossing dependencies

• As yet unknown:

• Under what conditions can RNNs encode MIX or unbounded copying?

• Do they enforce constant growth and well-nesting?

Descriptive Adequacy of RNNs

• Hahn (2020):

• Parity

• Dyck-2 S →  
 S → (S)  
 S → [S]  
 S → S S

• Parity, Dyck-2 HardTLs

• Angluin and Hao (2021) generalize this result Hard attention Transformer
languages are bounded by (languages accepted by constant-depth
polynomial-size Boolean circuits)

• But Yao et al. (2021) show a D+1-layer Transformer with Hard Attention
can recognize Dyck-k with bounded depth D (which requires o(log n)
precision)

{w ∈ {0,1}* |#1(w) = 0 mod 2}

ϵ

∉

AC0

Hard Attention
Descriptive Adequacy of Transformers

Why Dyck?  
“Pure” representation of  

hierarchical structure

(([()])) []

• Yao et al. (2021): A 2-layer soft-attention Transformer can recognize
Dyck-k

• Note 1: Their construction employs hard attention alongside soft
attention

• Note 2: It requires a certain sort of non-standard positional
embedding: i/n

• These facts points to the conclusion, recently championed by
Baroni (2021): we need to take the details of NN models more
seriously.

• How does expressive capacity of Transformers change with
different attention models and different positional encodings?

Soft Attention
Descriptive Adequacy of Transformers

• Do Neural Networks provide a basis for the learning of
grammatical patterns?

• Chomsky’s Idea: Theory provides a “ranking” of grammatical
hypotheses, which determines their preference for the learner.

• How do we characterize grammatical simplicity or the inductive
bias of a Gradient Descent learner when our model has millions
or billions of parameters?

Approaching Explanatory Adequacy

• Razin and Cohen (2020): inductive bias of deep neural
networks + Gradient Descent is not characterizable as
minimization of norms (for the task of matrix factorization).

• R&C suggest matrix rank as an alternative possible
characterization of inductive bias

• Gradient Descent during network training instead induces
norm growth.

• What is the effect of that?

Approaching Explanatory Adequacy

• Merrill et al. (2021): Norm
growth leads to saturated
models (hard attention), and
these are associated with weak
expressivity noted above.

• LSTMLs = CLs

• Shibata et al. (2020): PTB-
trained LSTM language models
show saturation in activations

Approaching Explanatory Adequacy

• Merrill et al. (2021): norm growth empirically
found in a big Transformer models (T5)

• Activations of pre-trained (but not untrained)
Transformers are correlated with “saturated”
versions

Approaching Explanatory Adequacy

