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The Goals of Linguistic Theory

Chomsky (1965)

* Descriptive Adequacy: Is the theory sufficiently rich to provide a
description of a natural language? (Lower bound on complexity)



Comparing formal grammars
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Comparing Formal Grammars
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Comparing Formal Grammars

Descriptive Accuracy

Recursively Enumerable

Context-Sensitive
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Context-free is not sufficiently powerful:
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The Goals of Linguistic Theory

Chomsky (1965)

* Descriptive Adequacy: Is the theory sufficiently rich to provide a
description of a natural language? (Lower bound on complexity)

 Explanatory Adequacy: Does the theory provide an account of
how a learner projects from a finite sample of data into a
grammar?

« Chomsky’s Idea (Inductive Bias): Theory provides a “ranking”
of grammatical hypotheses, which determines their preference
for the learner.



Comparing Formal Grammars
Explanatory Adequacy

 Question formation:

 The zebra is resting =
's the zebra resting?

 The zebra is hoping that the lion has eaten =
's the zebra hoping that the lion has eaten?




Comparing Formal Grammars
Explanatory Adequacy

* These hypotheses are distinguishable on the basis
of data that is (plausibly) not part of a child’s
experience:

* [The zebra that is resting] has eaten a bug =

MAIN: Has [the zebra that is resting] eaten a bug?
FIRST: *Is [the zebra that resting] has eaten a bug?

* A grammar formalism that favors the right

generalization (i.e., makes the right rule simpler) is
preferable



Comparing Formal Grammars
Explanatory Adequacy and CFGs
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Comparing Formal Grammars
Explanatory Adequacy

What counts as “simple” in CFG does
not correspond to grammatical naturalness!

Recursively Enumerable
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Comparing Formal Grammars
Explanatory Adequacy

Recursively Enumerable
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(CFG + structure-dependent modifications)
provide a natural account of grammatical phenomena
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The Goals of Linguistic Theory

Chomsky (1965)

* Descriptive Adequacy: Is the theory sufficiently rich to provide a
description of a natural language? (Lower bound on complexity)

 Explanatory Adequacy: Does the theory provide an account of
how a learner projects a finite sample of data into the right
grammar?

_+ von Humboldt’s idea: Theory limits grammatical hypotheses

", 1o those that are compatible with linguistic universals. (Upper
& bound on complexity)

4 - Constraint imposed by a grammatical theory limits
hypotheses (grammatical universals), and should/could
make the grammar learning easier.



Comparing Formal Grammars

Explanatory Adequacy

} 1 Transformational grammars \
(CFG + structure-dependent modifications)
provide a natural account of grammatical phenomena

_ Non-structural generalization are harder to state Y,
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They do not limit the expected range of
grammatical patterns or analytical options
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But TGs are very powerful (Peters and Ritchie)!
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What are Language Universals?

 Most work in generative grammar: stipulate properties of grammars:

 Final over final condition: no structures where a head-initial
phrase is contained in a head-final phrase in the same extended
projection/domain

 Williams cycle: a phrase cannot move into a position that is “less
prominent” than the one it is currently in

 Subjacency: No movement across more than one bounding
node.

* An alternative: derive constraints on what is possible from formal
(computational) properties of grammars



The Changing Tide

 Chomsky (1980)

 We are now asking whether there is some reason of principle
why these grammars must generate recursive sets. No

serious argument has ever been advanced in support of such
a claim.

« Chomsky (2005)

* The Principles-and-Parameters approach opened the possibility
for serious investigation of the third factor, and the attempt to
account for properties of language in terms of general
considerations of computational efficiency, eliminating some
of the technology postulated as specific to language and
providing more principled explanation of linguistic phenomena.



Computational Universals of Grammar

« Joshi (1985) introduces the Mildly Context-Sensitive Languages (MCSLs)

* Limited crossing dependencies: the class of natural languages should be sufficiently
expressive to characterize the cross-serial word order patterns found in languages like
Swiss German (Shieber 1985)

ww but not MIX = {w € {a,b,c}*|#, (w) =#,(w) =#.(w)}
« Constant Growth property: the sentences in any natural language should not have

gaps of unbounded length (i.e., if we order the strings in a language by length, the gaps
should be bounded in size).

{a**|n € N} but not {a”zln e N}
* Polynomial parsing: structural descriptions can be efficiently assigned to strings

* Not a formal definition, but several weakly equivalent instantiations: Tree Adjoining
Grammars, Combinatory Categorial Grammars, Linear Indexed Grammars (MCFGs and

MGs are richer)



Computational Universals of Grammar

* Well-Nesting (Kuhlman 2007):

For all edges vl — v2 , w1l = w2in D, if [v1, v2] partially
overlaps [w1, w2] then vl =* w1 or wil —=* v1.

?\ Y C\ "l

O———0 0=
1 2 3 4 5 1 2 3 4 5
DDT PDT 1.0 PDT 2.0
projective 3730 84.95% 56168 76.85% 52805 77.02%

weakly non-proj. 3794 86.40% 60048 82.16% 56367 82.21%
well-nested 4386 99.89% 73010 99.89% 68481 99.88%



Computational Universals of Grammar

* Block Degree (Kuhlman 2007):

C\ Q/O /O /O Well-nested dependencies of

O—0O—— .0 . block degree at most 2
JENE S IS are exactly those generable

L B 4 5 G ZZ . + 5 [ by TAG/CCG

(a) D1, block-degree 2 (b) D2, block-degree 3
block-degree DDT PDT 1.0 PDT 2.0
( 5 ; ” - ” Well nested 2-MCFGs
1 (projective 3730 84.957% 56168 76.857% 52805 T77.02% .
2 654 14.89% 16608 22.72% 15467 22.56% (Weakly) eqUIvalent
3 7 016% 307 042% 288  0.42% to TAG/CCG
4 — — 4  0.01% 1 < 0.01%
5 — — 1 < 0.01% 1 < 0.01%

TOTAL 4391 100.00% 73088 100.00% 68562 100.00%




Computational Universals of Grammar

 The good news: computational properties of MCSLs derive a
number of linguistic patterns:

* Subjacency (Kroch and Joshi)

* Williams cycle (Frank)

e Constraints on ordering (Steedman, Kroch and Santorini)

The bad news: The constraints imposed by MCS don’t help
learning

e Gold: even the lowest rung on the Chomsky hierarchy doesn’t
constitute a learnable class



Formal grammars and learning

* Another path: look for learnable subclasses +?
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Formal grammars and learning

* Do the resulting classes match properties of natural language? Is there a
convergence between learning and typology?

* In the domain of Phonology, things looks promising (Heinz et al.)
* Attested properties admit an elegant typology:
* Phonotactics/cluster restrictions: Strictly local
* Long-distance interactions (Chumash sibilants): Strictly piecewise
e Stress: Tier-based Strictly Local
* No way to state “impossible” constraints:
e First/Last Harmony

e Even number of sibilants



Formal grammars and learning

* Do the resulting classes match properties of natural language? Is there a
convergence between learning and typology?

e Syntax: Less promising (Hao, 2019, Graf 2013)

* Non-structural properties
MOD,, = {x||x| = 0 mod n} is k-substitutable for all k

* Unconstrained crossing dependencies

MIX = {w € {a,b,c}*|# (w) =#,(w) = #.(w)} is k-substitutable
for all k

* Unbounded copying

COPY (L) = {(x#)" | x € L} with L context-free is generated by a
3-MCFG with the 2-FKP and 1-FCP



The world of neural networks

Recurrent networks

* A model of transduction or acceptance:
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The world of neural networks
Deep RNNs
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The world of neural networks

Attention
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The world of neural networks

Transformers
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Descriptive Adequacy of NNs

* Are networks sufficiently rich to capture the properties of natural
language?

e Siegelmann and Sontag (1992, 1994), Siegelmann (1998):
RNNs can compute all Turing machine computable functions.

* Pérez et al. (2019), Bhattamishra et al. (2020): Transformers are
Turing complete too.

 However both of these results require arbitrary (rational)
precision and unbounded computation time



Descriptive Adequacy of RNNs

* Weiss et al. (2019), Merrill (2020), Merrill et al. (2020) impose bounded
precision (saturated values):

 SRNLs = GRULs = Regular Languages

« LSTMLs ¢ CLs (real time counter languages)

e Kirov and Frank (2011): With bounded time and o(log n) precision, SRNs
can represent nested and crossing dependencies

* As yet unknown:
* Under what conditions can RNNs encode MIX or unbounded copying?

* Do they enforce constant growth and well-nesting?



Descriptive Adequacy of Transformers

Hard Attention
. Hahn (2020):

e Parity {we {0,1}*|#;,(w) =0 mod 2}

« Dyck-2 S —¢ Why Dyck? |
S —(9) “Pure” representation of
S—[S] hierarchical structure
S—SS

(CLOI))I]
 Parity, Dyck-2 & HardTLs

* Angluin and Hao (2021) generalize this result Hard attention Transformer

languages are bounded by AC 0 (languages accepted by constant-depth
polynomial-size Boolean circuits)

e But Yao et al. (2021) show a D+1-layer Transformer with Hard Attention

can recognize Dyck-k with bounded depth D (which requires o(log n)
precision)



Descriptive Adequacy of Transformers
Soft Attention

* Yao et al. (2021): A 2-layer soft-attention Transformer can recognize
Dyck-k

 Note 1: Their construction employs hard attention alongside soft
attention

* Note 2: It requires a certain sort of non-standard positional
embedding: i/n

* These facts points to the conclusion, recently championed by
Baroni (2021): we need to take the details of NN models more
seriously.

 How does expressive capacity of Transformers change with
different attention models and different positional encodings?



Approaching Explanatory Adequacy

Do Neural Networks provide a basis for the learning of
grammatical patterns?

* Chomsky’s Idea: Theory provides a “ranking” of grammatical
hypotheses, which determines their preference for the learner.

 How do we characterize grammatical simplicity or the inductive
bias of a Gradient Descent learner when our model has millions
or billions of parameters?



Approaching Explanatory Adequacy

 Razin and Cohen (2020): inductive bias of deep neural
networks + Gradient Descent is not characterizable as
minimization of norms (for the task of matrix factorization).

 R&C suggest matrix rank as an alternative possible
characterization of inductive bias

e (Gradient Descent during network training instead induces
norm growth.

e \What is the effect of that?



Approaching Explanatory Adequacy

* Merrill et al. (2021): Norm
growth leads to saturated
models (hard attention), and
these are associated with weak
expressivity noted above.

e |STMLs =CLs

* Shibata et al. (2020): PTB-
trained LSTM language models
show saturation in activations
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Approaching Explanatory Adequacy

e Merrill et al. (2021): norm growth empirically
found in a big Transformer models (T5)

* Activations of pre-trained (but not untrained)
Transformers are correlated with “saturated”

versions




